カイメンタケ(Phaeolus schweinitzii)の抗酸化成分 Isolation of Antioxidative Compounds from Phaeolus schweinitzii

額田眞喜子*·山本功男** Makiko NUKADA*·YAMAMOTO**

Abstract

The antioxidative activity and active compounds of the fruit bodies of the mushroom, *Phaeolus schweinitzii* were studied. The ethanol extract of *Phaeolus schweinitzii* showed strong antioxidative activity. Its activity being comparable to that of *t*-butylhydroxyanisol (BHA).

Chromatographic purification of this extract gave an active compound identified as hispidin. Hispidin showed higher antioxidative activity than α -tocopherol and BHA.

Keywords : mushroom, Phaeolus schweinitzii, antioxidant, radical-scavenging activity, hispidin

In our study to find new antioxidants from the Basidiomycetes, we reported several species of mushrooms which showed a significant antioxidative activity against methyl linoleate^{1, 2}.

In this paper, we wish to report the isolation and characterization of the active principle of *Phaeolus* schweinitzii (Fig. 1).

The ethanol extract of *P. schweinitzii* was concentrated *in vacuo* to yield a residue which was partitioned between EtOAc and H_2O . The EtOAc layer was concentrated to give a residue which was chromatographed on Sephadex LH-20 (CHCl₃-MeOH=1:1) to give the antioxidant 1 as a brown needles (2.344g) (Fig.2).

The molecular formula of 1 was determined to be $C_{13}H_{10}O_5$ by HRMS. Analysis of the DEPT and HMBC spectra of 1 in conjunction with the ¹H- and ¹³C- NMR spectra indicated that the chemical structure of 1 was 4-hydroxy-6- (3, 4-dihydroxystyryl) pyrone (Fig. 3).

Compound 1 has been isolated from *Polyporus hispidus* as hispidin³. However, there has been no previous report on antioxidative activity of 1.

The antioxidative activity of 1 was assayed by measurement of radical-scavenging activity ⁴⁾. A comparison with *t*-butyl hydroxyanisol (BHA) and α -tocopherol indicated that the activity of hispidin was stronger than that of two standard antioxidants, and was 1.7 times stronger than α -tocopherol (Fig. 4).

Fig.1. Phaeolus schweinitzii

^{*} Faculty of Food Culture, Kurasiki Sakuyo University

^{**}Izumigaoka 18-9, Takarazuka, Hyougo 665-0851, Japan

Experimental

Apparatus

Melting point was measured on the microscope hot plate of a Yanagimoto MP-J3 instrument.

IR spectra were recorded on a Shimadzu IR-408 infrared spectrometer, and ¹H (600MHz) and ¹³C (150MHz) NMR spectra were obtained with a Varian-Unity 600 spectrometer, using tetramethylsilane as an internal standard. Chemical shift data were recorded as δ values. High- and low- resolution mass spectra were measured by a JEOLJMS-AX-500 spectrometer, and UV spectra were recorded on a Shimadzu UV-300 spectrometer.

Extraction and isolation

The fresh fruit bodies of *Phaeolus schweinitzii* collected in Nagano, Japan were dried at 60° C and ground mechanically to give powder (155g) which was extracted 2 times with EtOH (2 liter) at room temperature for 2 weeks.

The EtOH extract was concentrated to yield a residue (15.8g).

The residue was partitioned between EtOAc and H₂O, and the EtOAc layer was concentrated to give residue (9.1g) which was done a chromatographed on a Sephadex LH-20 ($20\phi \times 400$ mm) using a mixed solvent system of CHCl3-MeOH (1:1, v/v) to give Fr.1~11. The Fr.9~11 were combined and concentrated to give hispidin 1 as brown needles (2.344g), mp. 239 ~ 241° (dec.).

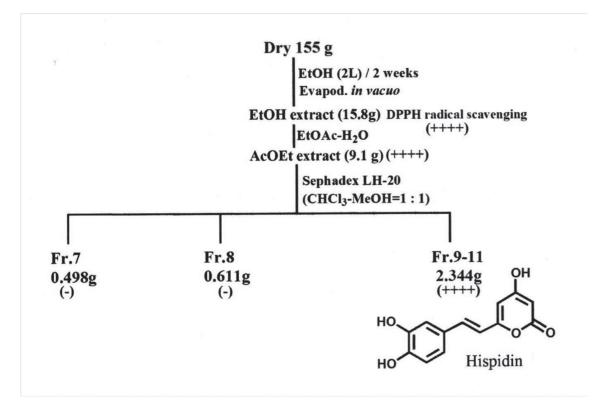


Fig.2. Extraction procedure of Phaeolus schweinitzii

The physicochemical properties of compound 1 are as follows : HRMS m/z 246.0492 (M^+ , $C_{13}H_{10}O_5$, calcd. as 246.0525). EIMS (200eV) m/z (%): 246 (M^+ , 100), 228 (8), 218 (7), 202 (31), 187 (12), 176 (43), 163 (39), 148 (20). UV λ max (EtOH) nm (log ϵ): 221 (4.49), 252 (4.13), 370 (4.37). FIIRvmax (KBr) cm⁻¹ : 3090 (OH), 1660 (C=O), 1600, 1125, 815. ¹H-NMR (acetone-d₆) : δ 5.39 (1H, d, J = 2.0Hz, H-3) , 6.14 (1H, d, J=2.0Hz, H-5), 6.68 (1H, d, J= 16.0 Hz, H-7),6.86 (1H, d, J= 8.1Hz, H-5'), 7.03 (1H, dd, J= 2.0, 8.1Hz, H-6'), 7.15 (1H, d, J=2.0Hz, H-2'), 7.28 (1H, d, J=16.0Hz, H-8).

¹³C-NMR (acetone-d₆) : δ90.6 (d, C-3), 101.1 (d, C-5), 114.7 (d, C-2'), 116.3 (d, C-7), 117.3 (d, C-5'), 121.6 (d, C-6'), 128.6 (s, C-1'), 136.1 (d, C-8), 146.3 (s, C-4'), 147.9 (s, C-3'), 161.2 (s, C-6), 164.8 (s, C-2x), 171.3 (s, C-4).

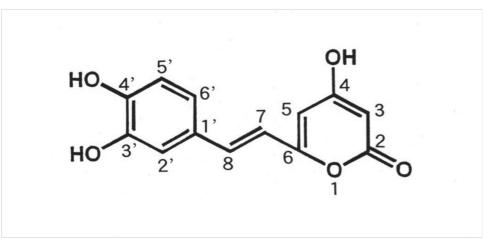


Fig.3. Structure of Hispidin.

Antioxidative activity of compound 1

The antioxidative activity was assayed by measurement of radical-scavenging activity⁴).

An aliquot of antioxidant solution (50 μ M) or ethanol (2ml) was mixed with the 100mM sodium acetate buffer (pH5.5, 2ml) and then added to 1ml of 500 μ M diphenyl-*p*-picrylhydrazyl (DPPH) in ethanol (final concentration of 100 μ M).

The mixture was shaken vigorously and allowed to stand for 30 min. at room temperature in the dark. The absorbance at 517nm by DPPH was measured by a UV-VIS spectrophotometer (Shimadzu).

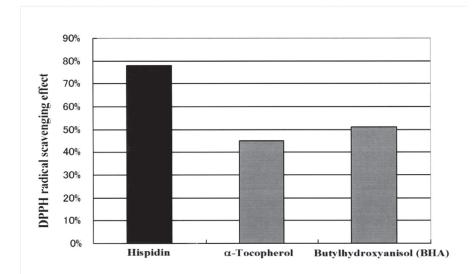


Fig.4. Free radical scavenging effect of hispidin from *Phaeolus schweinitzii* by diphenyl-p-picryl hydrazyl (DPPH) method. α-Tocopherol and BHA were used as the standard antioxidants. The test was run in triplicate and averaged.

Acknowledgments

We express our thanks to Mr. T. Hashimoto of Tokushima Bunri University for measuring the physicochemical data.

Reference

- M. Nukada, T. Hashimoto, I. Yamamoto, Neogrifolin derivatives possessing anti-oxidative activity from the mushroom <u>Albatrellus ovinus</u>, *Phytochemistry*, 59, 731-737 (2002).
- 2) Nukada, M., Yamamoto, I., and Sasai, K., Antioxidative substances from several mushrooms. *Nippon Nogeikagaku Kaishi* (in Japanese), **70** (e) ,58 (1996).
- 3) Edwards, R. L., et al., Constituents of the higher fungi. Part.1.Hispidin, a new 4-hydroxy-6-styryl-2-pyrone from *Polyporus hispidus (Bull.) Fr. J. Chem. Soc.*, 4995 (1961).

4) Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature, 181, 1191 (1958).